A Time Delay Neural Network for Online Arabic Handwriting Recognition
نویسندگان
چکیده
Handwriting recognition is an interesting part in pattern recognition field. In the last decade, several approaches are focused on online handwriting recognition because the very rapid growth of new technologies in the field of data entry. In this paper, we propose a new system for online Arabic handwriting recognition based on beta-elliptic model which allow to segment the trajectory into segments called strokes by inspecting the extremums points of velocity profile and extract their dynamic and geometric profiles. These strokes are used to train the Time Delay Neural Network (TDNN) which is able to represent the sequential aspect of input data. To evaluate our method, we have used a total of 25000 Arabic letters from the LMCA database. Our experimental results demonstrate the effectiveness of our proposed method and show recognition rates exceeds the 95%
منابع مشابه
Arabic Online Handwriting Recognition Using Neural Network
This article presents the development of an Arabic online handwriting recognition system. To develop our system, we have chosen the neural network approach. It offers solutions for most of the difficulties linked to Arabic script recognition. We test the approach with our collected databases. This system shows a good result and it has a high accuracy (98.50% for characters, 96.90% for words).
متن کاملRecurrent Neural Network Method in Arabic Words Recognition System
The recognition of unconstrained handwriting continues to be a difficult task for computers despite active research for several decades. This is because handwritten text offers great challenges such as character and word segmentation, character recognition, variation between handwriting styles, different character size and no font constraints as well as the background clarity. In this paper pri...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملIsolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs
For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...
متن کاملA connectionist recognizer for on-line cursive handwriting recognition
In this paper we show how the Multi-State Time Delay Neural Network (MS-TDNN), which is already used successfully in continuous speech recognition tasks, can be applied both to online single character and cursive (continuous) handwriting recognition. The MS-TDNN integrates the high accuracy single character recognition capabilities of a TDNN with a non-linear time alignment procedure (dynamic t...
متن کامل